
e ,  (~) = Oo - -  01/(6 + sO, 

O ~ O ~ s ~  ~(k o + 1 )  -1 k o + 1 '  2 Oo (ko+ i )  2 

s~ = soO o ~ - -  t "kOq- t ko+l " 

The value of Oo is found by solving the transcendental equation 
Oo = [t + ~/(ko + t)1-1. 

In practice, (4.1) and (4.2) describe o,(~) and 0,(8) satisfactorily for 8~>0.2 (error 
less than 0.5%). 

Figures 1-3 have been given for the case 8 = 0 and ~ = i, but incorporating 8 # 0 
does not result in any substantial quantitative changes in the curves (the maximum relative 
deviation does not exceed B). 
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MOTION OF A CLOUD OF HEATED PARTICLES ABOVE A HORIZONTAL 

SURFACE IN AN EXTERNAL FORCE FIELD 

G. M. Makhviladze and O. I. Melikhov UDC 532.529 + 536.46 

The motion of a system (cloud) of particles in an external force (gravity) has been 
studied experimentally and theoretically in the isothermal case where the temperatures of 
the particles and carrier medium are the same; a review and bibliography is given in [I, 2]; 
see also [3, 4]. One of the basic features of these studies was the identification of two 
different types of motion of the cloud depending on the degree of hydrodynamical or gas- 
dynamical interaction between particles via the carrier phase. In the "filtration" regime 
this interaction is small and each particle in the cloud moves independently. In the "en- 
trainment" regime, because of the friction between the phases, large-scale motion (of the 
order of the size of the cloud) of the dispersed medium with a rising flow on the periphery 
arises and the precipitating cloud is transformed into a vortex ring with continuously in- 
creasing diameter. 

Many phenomena in nature and in technological processes are accompanied by the forma- 
tion of aerosol clouds in which the temperature of the particles is higher than that of the 
ambient medium (emission from a smokestack, combustion products in fires, emission of aero- 
sols in the eruption of volcanoes). The initial temperature differential leads to new fea- 
tures in the evolution of the cloud of particles. As a result of interphase heat exchange 
the gas in the cloud is heated and expands, carrying along particles with it. As a result, 
for a sufficiently high concentration of particles, the cloud size increases in the initial 
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stage of the process (cloud dispersion) and the volume content of particles correspondingly 
decreases. Another important effect is that along with the precipitation of particles un- 
der the actlon of the external force, there arises motion of particles in the opposite 
direction as a result of thermal convection of the heated gas. For a sufficiently large 
initial temperature differential, the carrying away of particles by the rising current of 
gas can be so Significant that the cloud ruptures and divides into two smaller clouds moving 
in opposite directions. 

In the present paper, using the equations of mechanics for a two-phase medium [5] de- 
scribing the system in terms of two interacting and interpenetrating continua (gas and par- 
ticles), and the methods of numerical integration, we describe the motion of a cloud of 
heated particles of identical size in an external force field above a horizontal surface 
(surface of precipitation). The evolution of the cloud of particles is followed, estimates 
for several quantities characterizing the dispersion of the cloud are given, and the condi- 
tion for cloud division is determined. The possibility of using the results to describe the 
aerodynamics of a cloud of slowly burning particles is noted. 

i. We consider an initially cold gas at temperature To in static equilibrium in an ex- 
ternal force field above a plane horizontal Surface in which there is a cloud of solid or 
liquid spherical particles of identical size (a monodisperse aerosol). The spatial extent 
of the cloud in one of the horizontal directions is much larger than in the other. We will 
consider the problem in the planar formulation, introducing the coordinate system (x, y) in 
a plane perpendicular to the long:axis of the cloud with an origin lying in the plane of 
precipitation under the center of gravity of the cloud. 

The initial conditions are 

t = 0 ,  T z =  To, U~ = 0 ,  P l = p l o e x p ( - - g Y / R o T o ) ,  p = P i R o T o ,  

T2 ---- To -6 T,, n = n o exp [ - -  (x -~ n u (y - -  H)2)/R2], p~ = p~ 

(1.1) 

where subscripts I and 2 refer to gas and particles, respectively, and t is the time, p=, 
U~(u~, v~), T~(i = 1,2) , are respectively the mean density, velocity, and temperature of the • 
phases, n is the number of particles per unit volume, To + T s is the initial temperature of 
the particles, g is the accelerationof the external force directed along the normal to the 
plane in the direction of negative y, Ro is the gas constant, 0~ is the intrinsic density 
of the particles, d is the particle diameter, H is the initial height of the cloud, and p 
is the pressure of the gas. 

We introduce dimensionless variables, choosing as scales of measurement the initial 
radius of the cloud R, the velocity (gR) ~/2, the time (R/g)*/2, the temperature To, the con- 
centration of particles no in the center of the cloud at t = 0, the pressure 01oRoTo, the 
density of gas P:o near the precipitation surface; in addition, the dimensionless quantities 
entering (I.i) are used below in the same notation. We assume that the volume content of 
particles is small ~2 << al, and the ratio of intrinsic densities of gas and particles e = 
e = p10/p~<<1. We ignore fragmentation and evaporation of particles and assume that the tem- 
perature over the volume of a particle is constant. Then the plane nonstationary motion of 
the cloud of particles in the gas is described by the following equations in dimensionless 
variables 

Pl = - -  Pl div UI, p = p i t t ,  P J I  = ?(RePr) -IAT ( i .  2) 

- -  ( ? - - i ) p d i v U ~  + q ,  

p,U~ = - -  (?M~) - '  grad p + p,g - -  f + R e - ' ( A U  1 + (I/3)grad divU1); 

(~i = [O/Ot -}- (Uigrad)]~i,  A = O~Ox ~ q- OVOy 2, g = (0, - -  l )) ;  

M 2 = R~?RoT0,  Re = R3/2g'/2p,o/~, P r  = CpN/%, ? = cp/cv, 71 = cp/c2, ( 1 . 4 )  

w h e r e  M, Re,  a n d  P r  a r e  t h e  Mach,  R e y n o l d s ,  and  P r a n d t l  n u m b e r s ,  n and  % a r e  t h e  d y n a m i c a l  
v i s c o s i t y  and  t h e r m a l  c o n d u c t i v i t y ,  r e s p e c t i v e l y ,  w i t h  b o t h  a s s u m e d  t o  b e  c o n s t a n t s ,  ep  and 
c V a r e  t h e  h e a t  c a p a c i t i e s  o f  t h e  g a s  a t  c o n s t a n t  p r e s s u r e  and  v o l u m e ,  and  c2 i s  t h e  h e a t  
c a p a c i t y  o f  t h e  p a r t i c l e s .  The e x t e r n a l  f o r c e  and  t h e  h e a t  e x c h a n g e  b e t w e e n  t h e  p h a s e s  i s  
t a k e n  i n t o  a c c o u n t  i n  ( 1 . 2 )  a n d  ( 1 . 3 )  by  i n t r o d u c i n g  t h e  f o l l o w i n g  e x c h a n g e  t e r m s  

714 



f = 3ecaplp~lWl W/4~r,  cd = 24 ( i  Jr 0.158Re~/3)/Rep, 8 = d/R ,  ( 1 . 5 )  

Re~ = Re~p, I W l r - l ,  Re~ = d (Rg)'/~pm/~ (W = U 1 - -  U~, r = l - -  a~n); 

q = 67e Nu p2 (T~ - -  T1)/6 Pr  Reg, Nu = 2 ~- 0.6Prl/SRe~ ~, ( 1 .6 )  

where  c d i s  t he  d r a g  c o e f f i c i e n t ,  Rep i s  t h e  i n s t a n t a n e o u s  v a l u e  o f  t h e  Reyno lds  number o f  
the  p a r t i c l e s ,  Re~ i s  t h e  Reyno lds  number o f  t he  p a r t i c l e s  computed u s i n g  t h e  c h a r a c t e r i s t i c  
c o n v e c t i v e  v e l o c i t y ,  Nu i s  t h e  N u s s e l t  number c h a r a c t e r i z i n g  t h e  m a g n i t u d e  o f  t h e  h e a t  e x -  
change  b e t w e e n  p a r t i c l e s  and t h e  g a s ,  a~ i s  t h e  maximum volume f r a c t i o n  o f  p a r t i c l e s  
at the initial instant of time. 

The initial conditions (I.I) and the boundary conditions taking into account the sym- 
metry of the problem with respect to the plane x = O, the static equilibrium of the gas at 
infinity, the "cohesion condition" for the gas velocity at the precipitation surface (which 
is assumed to be adiabatic) have the form 

t = 0, TI = t ,  Ui = 0, Pl = exp(--  ~M~y), p = Pl, T~ I q - 0  

( 0 = r ~ / r  0 > 0 ) ,  n = e x p [ - - x  ~ - ( y - H ) 2 ] ,  P2=a~n/e ;  

x 2 + y~--+ oo, U x = O, T 1 = i ,  Op/Oy = -- 7M2pl; x = 0, u~ = 0, (1.7) 

OvJOx = OpJOx = OTJOx = 0; y = 0, U 1 = 0, 8T~/Oy = O. 

I t  i s  assumed t h a t  t h e  p a r t i c l e s  r e a c h i n g  t h e  p r e c i p i t a t i o n  s u r f a c e  r e m a i n  t h e r e .  

We c o n s i d e r  a q u a l i t a t i v e  e s t i m a t e .  For  an a e r o s o l  c l o u d  o f  r a d i u s  ~1 m i n  which  p a r -  
t i c l e s  o f  d i a m e t e r  ~10-~m a r e  s u s p e n d e d ,  f o r  g = 9 . 8 m / s e a  2, n/O~o = 1O - a  m 3 / s e c ,  we have  Re~ ~ 10, 
Re ~ 105. The l a r g e  v a l u e  o f  t he  " e x t e r n a l "  Reyno ld s  number  i n d i c a t e s  t h a t  t h e  m b t i o n  o f  
t h e  c l o u d  w i l l  be  t u r b u l e n t ;  t h i s  i s  a c c o u n t e d  f o r  i n  t h e  p r e s e n t  p a p e r  by g i v i n g  t h e  " e x -  
t e r n a l "  Reyn o l d s  and P r a n d t l  numbers  e v a l u a t e d  w i t h  t h e  e f f e c t i v e  t u r b u l e n t  t r a n s p o r t  c o -  
e f f i c i e n t s .  Also  one a s sumes  t h a t  t h e  p a r t i c l e  d i a m e t e r  i s  s m a l l  i n  c o m p a r i s o n  to  t h e  c h a r -  
a c t e r i s t i c  s p a t i a l  s c a l e  o f  t h e  t u r b u l e n c e ,  t he  s t r e a m l i n i n g  o f  p a r t i c l e s  i s  v i s c o u s ,  and 
f o r  t h e  i n t e r n a l  R eyno l d s  and P r a n d t l  numbers  in  ( 1 . 6 ) ,  ( 1 . 7 )  we u s e  t h e  m o l e c u l a r  t r a n s p o r t  
c o e f f i c i e n t s .  Then Re and Re~ w i l l  be  i n d e p e n d e n t  p a r a m e t e r s .  

I n  t h e  c a l c u l a t i o n s  t h e  f o l l o w i n g  p a r a m e t e r s  were  h e l d  c o n s t a n t :  M ~ =  0.75.i0 -3, Re 
29,05, Pr = i ,  s : =  i0-3, ? = i , 4 ,  ~1 = i and the  o t h e r  p a r a m e t e r s  were  v a r i e d  a s  f o l l o w s :  ~ = 
3 .3"10 -~ - - t . 4 "10  -4, = ~ = i 0 = 5 - - i 0  -~, e = 0 - - 5 ,  Re~=6-5" i0~ H = i . 5 - - 1 0 .  

The s o l u t i o n  o f  ( 1 . 2 )  t h r o u g h  ( 1 . 7 )  i s  o b t a i n e d  by n u m e r i c a l  i n t e g r a t i o n  a p p l y i n g  t h e  
method o f  [6 ,  7] t o  t h e  e q u a t i o n  o f  m o t i o n  o f  t h e  gas  and t h e  l o n g i t u d i n a l - t r a n s v e r s e  t r i a l  
run  method o f  [8] t o  t h e  e q u a t i o n  o f  m o t i o n  o f  t h e  p a r t i c l e s .  The c a l c u l a t i o n s  were  done on 
a n o n u n i f o r m  g r i d  w i t h  r e s p e c t  t o  b o t h  a x e s  and w i t h  t i m e  s t e p s  g i v e n  by  �9 = KMhm, where  
K = 4 i s  t h e  Couran t  number  and h m i s  t h e  minimum s p a t i a l  s t e p  o f  t h e  g r i d .  A d e t a i l e d  d i s -  
c u s s i o n  o f  t h e  me thods  used  i n  t h e  c a l c u l a t i o n  can  be  found in  [ 2 ] .  

2. I n  t h e  i s o t h e r m a l  c a s e  (e = 0) t h e  m o t i o n  o f  t h e  c a r r i e r  medium i s  due to  t h e  p r e -  
c i p i t a t i o n  o f  p a r t i c l e s ;  unde r  t h e  a c t i o n  o f  t h e  e x t e r n a l  f o r c e  t h e  p a r t i c l e s  b e g i n  t o  move 
downward and t h e y  c a r r y  a l o n g  t h e  s u r r o u n d i n g  g a s .  T h i s m o t i o n  o f  t h e  c a r r i e r  medium o c c u r s  
f o r  s u f f i c i e n t l y  l a r g e  p a r t i c l e  c o n c e n t r a t i o n s  where  t h e  f r i c t i o n  be tween  p h a s e s  i s  l a r g e .  
The solution of the planar problem in this case leads to two cylindrical vortices increasing 
in size and symmetric with respect to the plane x = 0 [2]. In the plane of symmetry, the 
gas in the cloud moves downward while on ~he periphery it moves upward. For a small con- 
centration of particles the carrier medium is practically at rest and the particles move as 
independent units, "filtering" through the fixed medium. 

The nonisothermal case (e > 0) differs in that at the intial instant of time there is 
a temperature differential between the particlesand gas. As a result of the equalization 
of temperatures of the two phases, the gas is heated. Therefore in the nonisothermal case, 
besides the motion of the carriermedium caused by precipitation of particles, another type 
of motion can be observed connected with the expansion of the heated gas and the develop- 
ment of natural thermal convection. Because particles are drawn into these motions, the 
cloud undergoes a significant change in comparison with the isothermal case. This refers 
to the entrainment regime, considered below. For a sufficiently small particle concentra- 
tion (filtration regime) the heating of the gas is significant and the cloud precipitates as in 
the:isothermal case [2]. For illustration of the features of the cloud motion in the non- 
isothermal case, refer to Fig. I where the time dependence of the maximum (over space) veloc- 
ities Uim = maxlUil (solid curves) and temperature Tim = max T. (dash-dot curves) are 
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shown for the two phases where 0 = 2 , ~ = i 0  -8,6=6.67.10 -~, H=5. The enumeration of the 
curves corresponds to that for the phases and the dashed lines give Uim(t) for O = O. The 
maximum values of the velocities and temperatures are reached in the plane of symmetry. 

In the isothermal case when the cloud is falling, the velocity of the particles U~ m is larger 
than the velocity of the gas U, m. The difference in the velocities results from the fact that inthe 

plane of symmetry, where the velocities are maximum and ui = 0, the velocity of particles 
relative to the carrier medium, over a time of order of the velocity relaxation time Tr, is 
approximately equal to the velocity of motion w of the separate particles. For the parameters 
used in Fig. I, integration of the equation of motion of the independent particles [2] gives 
T r = 0.54, w = 0o31. Large-scale vortex motion is formed after a time corresponding to the 
displacement of the cloud by a distance of the order of its initial size t " i/w = 3.2. 

In the nonisothermal case in the early stages of evolution of the cloud, an increase 
in the maximum velocity of the gas (v, m z 1.64 at t i 0.09) is observed; this is due to ex- 
pansion of the heated gas. The expanding gas moves from the center of the cloud in all di- 
rections, carrying particles along with it. This motion of the particles is superimposed 
on the motion downward under the external force. A maximum in the velocity V~m(t = 0.2) 
occurs (this is absent in the isothermal case) resulting from the dispersion of the cloud 
in response to the expanding gas. 

We now estimate some characteristics of the dispersion of the cloud. 

The dispersion time of the cloud, measured from the initial instant of time, is deter- 
mined by the characteristic time of the slowest stage of the process, which is conductive 
heating of the gas. Therefore it can be estimated as the temperature equalization time be- 
tween the phases tl : I~/4 where l= <n> -I/3 is the mean distance between particles, < N > = 
kno is the mean concentration of particles over the cloud determined by integratin 8 the ini- 
tial distribution n(x, y) over the volume of the cloud (for a cloud with a uniform distri- 
bution of particles k = 1), and finally M = %/p,ocp is the thermal conductivity of the gas. 

Writing no in terms of the volume fraction of the particles ~ and the particle diam- 
eter we have 

T~ = t 1 (gl R)  ll~ ~ .  ( i /4)  (~/6a~)~/'Be~6Pr. ( 2 . 1 )  

One can estimate the average temperature of the gas and particles after dispersion of 
the cloud using the balance of thermal energy given off by the particles and acquired by 
the gas: 

c~M~ ( T s - -  <T>) = % M ,  (<T> - -  Y0) , Mi  ~ pl0~R 2, M~ = k = ~ p ~ R  ~, 

where M i is the total mass of the i-th phase in the cloud. We have 

<O> = <T>/T o = i + [O/(l + o)l, a = cpA[1/c2~f 2 = yle!k=~, ( 2 . 2 )  

so  t h a t  t h e  a v e r a g e  t e m p e r a t u r e  i s  d e t e r m i n e d  by  t h e  r a t i o  o f  t h e  t o t a l  mass  o f  g a s  and p a r -  
t i c l e s  c o n t a i n e d  i n  t h e  c l o u d .  T h e r e f o r e  t h e  p a r t i c l e s  can  h e a t  t h e  g a s ,  d e s p i t e  t h e i r  
small volume content. 
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The expansion of the gas can be considered as an isobaric process in which the param- 
eters of the gas satisfy the relation V0/To = V~/T, (Vo and V, are the volumes of the cloud 
at t = 0 and t = t,). It then follows that the volume of the cloud increases by a factor 
of <0> and the radius RI/R by <0>I/2 as a result of dispersion. The mean velocity of the 
gas is given by <~> = (<0> I/2- I)/~i. 

For the parameters used in Fig. l, the above estimates are ~ = 0.64, <0> = i.??, H1/H = 
1.33, <u> = 0.51, which compares well with the numerical results ~i = 0.6, <0> = 2, HI/H = 1,21 
(the radius of the cloud is defined with respect to the line of constant concentration n = 
0.1). Comparing the values of ~, <0> , and RI/R obtained using (2.1), (2.2) with those of 
the numerical calculations for different values of the parameters shows that the above es- 
timates give the correct dependence on the parameters ~, ~ and 8. 

The greater the degree of temperature equalization between the two phases (the tempera- 
ture difference is 10% of the initial temperature differential for T~ z 0.6; see the dash- 
dot curve in Fig. i), the smaller the velocity of the gas, and the particles are displaced 
only downward. 

From this point up to time t = 2 the cloud precipitates in the external force field. 
The velocities of gas and particles will be much smaller than in the isothermal case due to 
the decrease in the volume fraction of particles in the initial stage of the process from 
the increase in the cloud size because of dispersion. This leads to a decrease in the gas- 
dynamic interaction between particles. The relative velocity of motion of the phases is 
U2m -- Vlm ~ W. 

From time t ~2 on, thermal process significantly affect the motion of the cloud. The 
charaeteristic time for the development of thermal convection can be estimated from the for- 
mula zc = tc(~R)I/2 [2RJR((O>--I)]~/2 = 1,55 which gives for the instant of time corresponding 
to the onset of convection the value t=r~q-r c =2A5 which agrees with the numerical result. 
The gas velocity U~ m again begins to increase because of the development of thermal convec- 
tion in the gas. The rise of heated gas is accompanied by the formation of vortex convective 
motion in the upper part of the cloud. This motion is in the form of a pair of symmetric 
cylindrical vortices. They can be called thermal vortices since they occur only in the non- 
isothermal case. This type of motion is observed in rising volumes of hot gas under the 
action of the buoyancy force [9]. An increase in the intensity of the buoyant vortices 
leads to an increase in the gas velocity, and it begins to exceed the velocity of the par- 
ticles U2m (this corresponds to the interaction of the solid curves in Fig. 1). 

Almost simultaneously with the formation of thermal vortices, a large-scale vortex mo- 
tion of both phases develops in the lower part of the cloud. This is caused by the precipi- 
tation of particles under the external force. This motion has been studied in the isother- 
mal case in [2, 3]; it is characterized by a continuous increase in the downward velocity 
of the cloud of particles. Therefore in Fig. 1 the value Uam increases until the majority 
of the particles reach the surface. 

The development of vortex motion formed by upper thermal vortices and lower !'sedimen- 
tation" vortices is shown in Fig. 2 for t = 7.4. The pattern is completely symmetric about 
the line x = 0. To the right of the axis the velocity field and isotherms of the gas are 
given; to the left are given the velocity field of the particles and the lines of equal con- 
centration. Values are shown for several of the lines of equal T~ and n, and the initial 
concentration distribution is shown by the dashed lines. 

Because of the rise of the heated gas, the isotherms are drawn toward the vertical and 
eventually (t~ ii) "rupture" with the upper part of the isotherm taking on the form of a 
buoyant mushroomlike thermal. The intensity of the thermal Convection is not sufficient 
in this case to carry upward a sufficient number of particles. However the rising flow of 
gas on the symmetry axis retards the motion of particles in the upper part of the cloud. 
Therefore the lines of equal concentration are also drawn toward the vertical. The calcula- 
tion stops when the thermal vortices leave the region of interest and the particles are com~ 
pletely precipitated on the horizontal surface. 

3. ~or a sufficiently strong convective motion of the heated gas, a significant num- 
ber of particles are trapped by the rising thermal vortices and are carried upward, At the 
same time the remaining particles continue moving downward under the external force. Hence 
the lines of equal concentration become strongly distended toward the vertical and eventu- 
ally rupture with the cloud dividing in two. This process is shown in Fig. 3 for 8 = 3, 
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=~=10 -8 , 6 =8.87.10 4 ,H=4.4. The equal concentration line n = 0.I is shown at t = 0 
(dashed curve) and t = 7.4, ii.i, 13.8 (curves I through 3, respectively). According to 
the degree of cooling of the cloud its rise is slowed down. Eventually it must come to rest 
and precipitation of particles begins. 

The condition for cloud division within the range of parameters chosen above basically 
depends on 8, 6, u~ . In the numerical calculation we determine the boundary separating the 
different types of cloud motion for a fixed value of the cloud height H = 3.2. In Fig. 4 
8(6) is shown for u~ - I0 -s (curve i) and 8(a~) for 8 = i0 -s (curve 2). Above these curves 
there is cloud division; below them the cloud moves as a whole. In these calculations it 
was assumed that in cloud division the thermal vortices carry away not less than 10% of the 
total number of particles. 

An increase in the size of the particles for a fixed value of the total mass of dis- 
persed material leads to a shift of the boundary toward higher initial temperature differ- 
entials (curve i); this is a consequence of the greater inertia of large particles and the 
fact that a more intense thermal vortex is required to capture them. Curve 2 shows how the 
boundary dividing the solutions changes when we vary the particle concentration and keep 
other parameters fixed. An increase in particle concentration leads on the one hand to a 
greater heating of the gas in the cloud. This can increase the intensity of the thermal 
vortex and capture a greater number of particles in the rising current of gas. On the other 
hand, the absolute number of particles also increases (directly proportional to a~) which 
must go into the rising cloud in order that there be a division. These two factors deter- 
mine the nonmonotonic behavior of curve 2: For small a~ the increase in the intensity of 
the thermal vortices is the most important factor; for u~ > i0 -s the second factor dominates. 
When the initial height of the cloud is increased, the boundary dividing the solutions is 
displaced in the direction of larger 8 because for small cloud heights the precipitation 
surface hinders its fall and therefore encourages cloud division. 

In order to study the cloud division process quantitatively, we introduce a cloud divi- 
sion parameter given by the fraction of particles in the rising cloud: s = Nb/No where N b 
is the number of particles in the upper cloud and No is the total number of particles. The 
calculations were carried out for conditions of cloud division and yielded s as a function 
of the initial temperature differential, and the size of the particles and their volume 

"0 
fraction. In Fig. 5 ~H = 3.2) the dependence of s on 8 is shown (curve i: ~= I0 -s, 6 = 
6.67.10 -5) as well as the dependence on 6 (curve 2: ~=I0 -3, 8 = 3 ) and a~ (curve 3: 
6=6.67.I0 -~, 8=3.5). With an increase in 8 the intensity of thermal convection increases 
and therefore the function s(8) increases with e. The downward direction of curve 2 is ex- 
plained by the fact that larger particles are more difficult to trap by the thermal vortices. 
The nonmonotonic behavior of curve 3 is due to the same causes as the curve %(a~) in Fig. 4, 

Finally we note that our results can be useful in aerodynamical calculations of clouds 
of burning particles suspended in a cold gas above a plane horizontal surface. The disper- 
sion and division of the cloud, the ~characteristiC gasdynamical pattern of ascending and de- 
scending flows can be realized if the combustion time of the particles is larger than the 
characteristic time for the development of convection in the gas and the precipitation time. 
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Calculations were done for large H and showed that the features of cloud evolution discussed 
above (Figs. 1-3) also apply when the cloud falls in an unbounded space; the curves shown in 
Figs. 4, 5 apply quantitatively to this case. 
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TWO-PHASE THREE-COMPONENT FILTRATION WHEN OIL IS DISPLACED 

BY A SOLUTION OF AN ACTIVE ADDITIVE 

P. G. Bedrikovetskii UDC 532.546 

Among the new methods for increasing the output of oil from rock strata, an important 
place is occupied by processes in which the oil is displaced by solutions of active addi- 
tives: carbon dioxide gas or surface-active substances. Self-similar solutions were ob- 
tained earlier for the case of frontal displacement of the oil by dilute solutions of the 
additives [i, 2]. At high concentrations of a pumped-in solution the transition of the 
additive from the injection phase to the oil phase leads to an increase in the mobility of 
the oil and has a substantial effect on the displacement process. In [3] solutions were 
obtained for the problem of forcing oil out with solutions of any concentrations, on the 
assumption that the total volume of the phase remained constant when dissolution took place, 
and we obtained a number of solutions for problems of frontal displacement. In the present 
study this system of equations is considered in connection with an active additive which 
can be dissolved in water and oil but does not cause interphase mass exchange between the 
water and oil components. We investigate the problem of the decomposition of an arbitrary 
discontinuity, and we obtain self-similar solutions for problems of frontal displacement 
with arbitrary values of flooding of the stratum and any forms of the distribution function 
of the additive between the phases. From the solution of the problem of the structure of 
the discontinuity, we obtain the conditions for stability of the generalized solution. We 
investigate typical interactions of simple waves and shock waves, and we obtain solutions 
for problems involving displacement of the oil by a dose of the solution of active additive 
forced through the stratum by water. 

I. Analysis of the Initial System of Equations. In the displacement process the ad- 
ditive is distributed between the water and oil phases. The system of equations of a two- 
phase three-component filtration consists of the equation of discontinuity for the water 
component, the oil component, and the active component [5]. When we consider large-scale 
displacement processes, we disregard the capillary jump in pressure between the phases, 
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